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1.0 INTRODUCTION

1.1 History and Nature of Focused Fields

Focused antennas are of interest for microwave power
transmission (solar power satellite) and for applicaticns re-
quiring high power density at moderate ranges. Probably the '
earliest work on focused antennas was that of Wehner, reported -
in a 1949 RAND report. Subsequently, Cheng (1955, 1957) cal-
culated defocus regions, while Bickmore (1957) calculated depth
of field and measured a far field pattern in the near field of

a focused antenna. This antenna was an 8 ft. long linear slot
array at 34 Ghz. The normal 2200 ft. half far field distance
was reduced to 65 ft. by bending the array into a circular
arc, with excellent results. In 1962 Sherman published several
calculated patterns of focused antennas. (See also ECI,
1962). Wheeler (1962) discussed the effects of focusing on
difference (monopulse) patterns. Partially coherent excita-
tion was treated by D'Auria and Solimini (1967). Measurements
of focused linear arrays have also been made by Fahey et al
(1972). 1In a related work Fresnel zcne plates for focusing
are evaluated by Van Buskirk and Hendrix (196l1), and, as
expected, the gain is very low. Although focused antennas

are simple, the record is indeed meager.

A simplified picture of power flow from an aperture
antenna is sketched in Figure 1; the power is contained in a
corrugated tube whose mean diameter is that of the aperture.
The surface undulations increase in size and period as dis-
tance increases, finally spreading out to form the far field
beam. This tube extends to roughly twice the hyperfocal distance
R = LZ/ZA where L is the aperture width or diameter. To allow

accurate pattern measurements, the far field distance is usually
taken as 2L2/A. Beyond LZ/A, the beam flares out into the 3 db
beamwidth of 63 = A/L. To focus the antenna, a rotationally
symmetric quadratic phase is added to the aperture excitation,
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Sketch of Focused Spot




allowing all parts of the aperture to contribute in phase at
the focal point at distance ry. This gives a far field type
pattern in the focal region, with near field type patterns at
closer distances, and in the far field. Because of this and
other complexities, the terms 'Fraunhofer' and 'Fresnel' re-
gions are deprecated. Rather the IEEE (1969) field definitions
of far field, radiating near-field and reactive near-field
are preferred. For antenna focused at infinity or at the
hyperfocal distance, the spot size is roughly L. When the
antenna is focused at a shorter distance, the spot size is
reduced as sketched in Figure 2. The spot width W is approx-
imately proportional to focal distance:

W
E— —-2—— or WL—I'O)\

Thus high power densities require small spots, which are pro-
duced by large antennas at short wavelengths. Power density
is, for any focused antenna (Hansen, 1959):

PG

PD = —
4wr0

where P is the radiated power and G is the antenna gain. Note
that G is the focused antenna gain at the observation point
which will not be the same as the unfocused gain. In terms of
aperture size, the far field power density is roughly:

Figure 2 and the equations above imply a zero width spot at
zero distance, but the spot width actually levels off at a
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minimum value of roughly A/3 as shown by direct calculations,
by an uncertainty argument, and by microscope theory (Hansen,

1965) .




1.2 Near Field Calculations

The calculation of accurate fields close to an aper-
ture has always been and still is a difficult problem. This
problem is eased when long distances are involved so that phase
and amplitude approximations allow such techniques as Fast
Fourier Transform to be applied or when the observation angles
of interest are close to the axis and at the same time the
distance is not too short. All of these ameliorating circum-
stances approximate the two dimensional field (or diffraction)
integral by a simpler form. Narrow angle Fresnel theory is
from the 19th century; see Hansen (1964) for historical refer-
ences. More recent work in utilizing narrow angle Fresnel
approximations is by Woonton (1950), Lechtreck (1955), Bates
and Elliott (1956), and Melpar (1964). Calculations involving
directivity as well have been made by Yang (1955), Polk (1956),
Kay (1960), Jacobs (1962), Soejima (1962), and Lind (1966).
Other approximate methods include the inverse distance series
of Barrar and Wilcox (1958) and simplification of the integrand
by Shinn (1956). Measurements in the near field have been
made by Bickmore, as previously mentioned, and by Jull (1962)
and Scharfman and August (1970). Unfortunately, all of these
analytic:l techniques are simplistic and severely limited. As
a result, they have not received attention in recent years.
There is an extensive body of experience and literature in
the extrapolation of measurements made in the near field close
to the surface of an antenna to the far field, the 'near field
pattern range'. This work will not be discussed here as it is
not relevant or useful but only interesting. Surveys of this
work are given by Johnson et al (1973) and Wacker (1982).

There are three techniques for reducing the labor of
calculating accurate fields from large apertures, and these
techniques need to be evaluated for focused near field usage.
Two of these have conections to the work in the 19th century.
The first i: the 7 _aike-Jacobi polynomial approach. In this




technique, originated by Zernike (1934), a set of orthogonal

polynomials 1is established in the unit circle. These are
sometimes called circle polynomials and are members of the
Jacobi family. When used for the diffraction field of an
optical device, the result is a double series which converges
rapidly for small angles. The Zernike-Jacobi polynomials were
applied to electromagnetic problems by Cornbleet (1963) and
subsequently utilized by Galindo and Mittra (1977), Galindo
and Rahmat-Samii (1981), and by Rahmat-Samii et al (1981). The
last reference is a review of this technique and a discussion
of its application to near fields. A closely related approach
is that of Hu (1960, 1961) who obtained an improvement on the
small angle Fresnel formulation, with the resulting field
expressed as a sum of Lommel functions of two variables. See
also Hansen (1964). Lommel's work dates from 1884. When the
Lommel function of two variables is expanded in a series of
Bessel functions, a connection can be made with the Zernike
polynomials. The Zernike-Jacobi method is, however, basically
a small to moderate angle approach in that for large angles
the series diverge very slowly. Thus, it cannot be considered
here, because wide angle pattern behavior of high power micro-
wave antennas is important due to personnel hazards, gain loss,

equipment interference, etc.

The second technique with ancient roots is that of
field interpolation using a sampling function. Instead of
sampling the aperture distribution at a discrete number of
suitably closely-spaced points to compute the far field (this,
of course, is what an array does), the far field is calculated
by interpolating between a discrete number of far field sample
points. The number of far field sample points is comparable
to the number of aperture sample points so it might appear that
no saving would occur. However, the sampling technique is
advantageous when the far field points can readily and easily
be obtained, e.g. by FFT, and when the angular region over which

the field is needed is considerably smaller than the complete




range of angles. For linear or rectangular apertures in the
far field, the interpolation function is typically the sinc
function, sin x/x. For circular apertures, it is 2J1 X/x,
again for the far field. Interpolation functions for near
field regions are discussed later. This technique was applied
to antennas by Ruze (1964), with applications for paraboloidal
reflectors in which the surface curvature must be taken into
accour.t made by Bucci and Franschetti (1980, 1981 a & b). 1In
applying this technique to calculations in the near field,
there are some important questions that must be answered, such
as how close must the samples be spaced and how difficult is

it to calculate the starting near field values. These questions
are answered in Appendix A with the results that the sampling
interpolation technique is not at all attractive for near field
calculations, and, in fact, is slower than direct numerical
integration.

The third method is somewhat more recent and was
developed by Hansen and Bailin in 1959, Here the Hertzian
dipole kernel is expressed as a triad of spherical Bessel
functions; these are then expanded by the Bessel function ad-
dition theorem which allows the original double integral to
be expressed as a sum of radial integrals which involve only
Bessel functions and the aperture distribution (but not tke
observetion angles) and angular integrals which involve only
associated Legendre functions and elevation angle (but not the
aperture size). The azimuth angle appears simply in the series
coefficients. This method is exact and gives accurate results
and is believed to be comparable in efficiency to the method
used in this report as long as more than several patterns are
to be calculated. However, the mathematics of the program

are complex, while the selected method has the virtue of
simplicity.

The method that is used in the remainder of the
report is direct double numerical integration. There are
three widely used, highly efficient methods for this task, and

-7-
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each of these is evaluated quantitavely in Appendix B. The
methods are Romberg, which is an adaptive trapezoidal inte-
grator; Gaussian, wherein the coefficients are related to
improved convergence series ala Shanks, and replacement of the
aperture ty a discrete array with summation thereof. 1In all
cases, the number of points must be two per wavelength in each
aperture coordinate for accurate results near broadside and
four per aperture wavelength for accurate results near endfire.
Thus, a 15 wavelength source requires roughly either a seventh
order Romberg, a 32-step Gaussian, or 60 array points. From
Appendix B the conclusion is that the Gaussian has the best
combination of accuracy and speed. Ir: this report two Gaussian
integrators are used, with steps of 32 and 128. The latter
allows wide angle results from apertures as large as 60 wave-
lengths in one dimension. Axjial fields are calculated with

the smaller integrator as they dc rot experience the rapid phase
changes that large apertures have near endfire.




1.3 Outline of the Report

Section 2 of the report is concerned with calculated
results of fccal region fields. Axial power density, includ-
ing designs for low transverse sidelobes ard designs fcr low
forelobes and aftlobes, are included in Section 2.1. Trans-
verse fields are presented in Section 2.2. References are
contained in 2.3. Conclusions and system tradeoffs are given
in Section 3. Appendices cover an evaluation of the sampling
interpolation technique, an evaluation of numerical integra-

tion methods, and listing of computer codes.
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2.0 CALCULATION OF FOCAL REGION FIELDS

An excellent picture of the behavior of focal region
fields can be obtained from various transverse pattern cuts
along with a plot of axial power density. The axial case is
treated first as it is somewhat easier, and this section is
followed by the transverse case. The aperture investigated is
square as this is expected to be representative of typical high
power microwave antennas. Such an antenna must be an array to
allow variable focus; and depending on the type of elements,
the array shape may be square, hexagonal, octogonal, circular,
etc. The focal field results will vary in a small way with the
array shape so that the results herein are expected to be
typical of all focal region fields. Since a tapered aperture
distribution may be used, the one-dimensional Taylor one-parameter
distribution is applied to the x and to the y axes of the array.
This is a low Q, robust, highly efficient distribution which
has a far-out sidelobe envelope decreasing as 1l/u, where u =
(L/X) sin 6 cos ¢. The pattern is a modified sin x/x through
the Taylor parameter B. This pattern is described in Appendix
A, and the corresponding aperture distribution is

g(x) = I, (vB V1-x2)

The sidelobe ratio (inverse of sidelobe level) is given by

SLR = 20 log £XBRL.TB 4 13 26 b

Table 1 gives the parameter B for various sidelobe ratios along
with normalized beamwidth, aperture efficiency, and excitation
edge taper., For additional information, consult Hansen (1983).

LHECEDING PAGE BLANK-NOT riue
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Table l-Taylor one-parameter line source characteristics

SLR B us n ™, edge taper
dB rad dB
13.26 0 0.4429 1 0.443 0
15 0.3558 04615 0993 0.457 2.5
20 0.7386 0.5119 0.933 0478 9.2
25 1.0229 0.5580 0.863 0.481 15.3
30 1.2762 0.6002 0.801 0.481 21.1
35 1.5136 0.6391 0.751 0.480 268
40 1.7415 0.6752 0.709 0.479 324
45 1.9628 0.7091} 0.674 0.478 379
50 2.1793 0.7411 0.645 0.478 433

Other distributions such as the Taylor n are slightly more
efficient, but the Taylor one-parameter distribution is
representative of all cases likely to be of interest. {




2.1 Axial Power Density

The discussion of power density along the axis in
the focal region is divided into two parts. The first part
is concerned with axial power density for uniform and Taylor
distributions; these give low sidelobes in the transverse
planes. The second section is concerned with low forelobes
and aftlobes along the axis, and follows a method developed
by Graham (1983).

2.1.1 Taylor Patterns

The square aperture of concern is shown in Figure 3
where the focal distance is Iy and the point along the axis
is specified by Ry- The field on the axis is given by

g(x)g(y) exp jk(R-r) dx dy

o%n—-

1
2
F(0,0) = %‘er
0

2
where R2 = RO2 + %— (Xz + Yz)
2 _2.1% 2. 2
and r° o=y 4 - (x® + y%)

The exponential form is needed as x, y enter only as squares,
and thus cannot make a ccsine form. The aperture distribution
in each coordinate is given by g(z). It is convenient to
normalize the focal distance in terms of the far field dis-
tance 2L2/A and also to normalize the distance along the axis
to the focal distance. These are

R r
0 0
B=— ’ Y = z
o 215/
d d .
Note that normalized observation distance is: —g—— = By
2L/

-13-
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When these are inserted, the equation for R becomes

22

L) 2 <2 4 42
R=1L |48 v (X) + ==

Focused antennas for high power applications will most likely

1/2

be arrays, whether of resonant elements such as slots or dipoles
or of larger elements such as horns or dishes. Since all of
these have an element pattern, the most representative results
are obtained by including a suitable element pattern in the
calculations. This pattern is the ideal active element pat-
tern for a half-wave spaced array, and is a power pattern of

cos 6 in all planes. Since the integration involves 32 steps, '
a 32-step approximation to the active element pattern is used !
by virtue of incorporating the element patterr into the inte-
gration subroutine. The active element pattern is simply
given by

AEP = \/RO/R

For uniform excitation the integral can be approximately writ-
ten in terms of Fresnel integrals; this approximation is good
for large y and D/A. However, for small apertures and for ta-
pered apertures, it is necessary to use other techniques for

evaluating the double integral. An extensive discussion of
this problem is given in Section 2.2, but here the method
recommended in that section will be used. This is double Gaus-
sian integration. Fcr large L/)A, the phase term may be approx-

imated by separating it into x and y factors; each factor is
5 kept in the square root form:

1

Y

F(0,0) = o | g(x) exp jk(Rx—r) dx J( g(y) exp jk(Ry-r) dy

0 0




2 2 1/2
where Rx = L | (2B8YL/A)° + (x/2)

To evaluate this approximation, calculations have been made

for L = 20X with this formula and with the exact result. A
further simplification has been evaluated, where each separated
phase square root expression is replaced by a simple quadratic
phase term. For uniform excitation this quadratic phase term
leads to the Fresnel integral form

F(0,0) = ERMI'TBS [Cz(arg) + sz(arg)]

arg = (1-8)/4BY

Figures 4, 5, and 6 show the results for y = .025 and for
uniform excitation. Figure 4 is the result of the exact cal-
culation, Figure 5 is the result of using the separated quad-
ratic phase terms while Figure 6 is the Fresnel approximation.
It can be noted that the separated quadratic phase approxima-
tion yields results that are very close for the first forelobe,
main lobe, and back lobe with close in forelobes having lower
peaks and less deep nulls. Thus, the forelobe envelope in

the approximate form decays somewhat faster than the exact
result. The Fresnel approximation gives a main lobe broader
than actual with an aftlobe several db too low. The forelobes
are displaced in position and have an envelope that decays much
faster than the actual. For small values of 8 the results are
due to computer errors. Similar results were obtained for the
25 db Taylor case. In general, the separated phase calcula-
tion agrees more closely with exact calculation for larger y
and for larger L/)A. Since practical high power microwave
apertures are likely to be much larger than 20X, the separated
phase results are quite adequate and are used for more exten-
sive calculations.
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Figures 7, 8, 9, and 10 show the axial distribution
of uniformly excited square apertures for larger values of v.

It may be noticed that at distances approaching LZ/A the pat-
terns peak occurs significantly closer to the aperture due to
the 1/R2 effect. As y becomes smaller, the peak moves closer
to the focal point, at 8 = 1. Also, as y increases, the fore-
lobe level increases. This level is roughly -12 db at y = .05

and increases to -4 db at y = .5. Note that there are no
aftlobes at all. Figures 11 through 14 show the axial distri-
bution for a square aperture with a 25 db Taylor distributicn
along each axis. Not surprisingly, the forelobe oscillations
are considerably reduced, but the forelobe envelope is increased.
For example, for y = .05 the forelobe is not quite -8 db and
for vy = .2 it has increased to less than -3 db. Figures 15
through 18 show uniform and 25 db results for a 100X square
aperture. The 100X results are very close to those of 201,
except for low forelobes at small values of B. It appears that
the axial field distribution is essentially independent of L/),
as long as L >> A. Thus these axial results are expected to

be representative of all large square apertures.

From the sequence of Figure 5, and 7 through 10, the
effect of the 1/R2 can be observed. As mentioned above, for

small y the peak occurs close to 8 = 1, i.e. near the focal
point. As the focal point moves away from the aperture, the
peak moves away also but at a progressively slower rate so
that as the focal point approaches infinity, the peak merges
into the 1/R™ contour. The behavior can be understocd quan-
titatively by utilizing the approximate Fresnel integral form
which, although inaccurate for forelobes and aftlobes, gives

good results for the lobe peak. When the aperture power den- k
sity is normalized to unity at a distance of 2L2/A, the power

at the beam peak is as shown in Figure 19. Power is plotted

here against By as this is distance in terms of far field dis-
tance. It can te seen that for large distance the focal spot
is merging into the 1/R2 contour at a point which gives a

power density of roughly 11 db. This curve can be used in the

-20-
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tradeoff of aperture size, wavelength, focal distance, and
power density. For example, selection of gy = .02, which is

for a spot maximum at R = .04L2/A, gives a power density
increase of 34 db (2500) over the unfocused value at 2L%/%,
from Figure 19. That unfocused value is:

2
PG PL 9 Pn
PD:-——-Z_—_- =__.2.
47R R™X 4L

where n is the array efficiency (wrt lossless uniform exci-
tation). The spot maximum power density is then Pp /4L2 times
2500. The focal distance is found from Figure 19 where o = .025.
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2.1.2 Low Forelobe and Aftlobe Axial Patterns

From the previous work, it was observed that a
tapered distribution which gave lower transverse pattern side-
lobes yielded higher for forelobes and aftlobes along the axis.
One might expect that an inverse aperture taper, i.e. one
higher at the edges than at the center, would reduce the axial
lcbes. This type of distribution is not to be confused with
a monopulse distribution, where the two halves of the aperture
are out of phase. Graham (1983) has discovered a clever way
of exhibiting this property for line sources. Note that line
sources are intrinsically different as shown by Ricardi and
Hansen (1973). 1In a two-dimensional aperture the near field
phase smear degrades the pattern directivity in both planes,
thereby negating the l/R2 field increase with decreasing dis-
tance. The result is that between the aperture and the focal
peak the power density for an unfocused planar aperture is
roughly constant, i.e. the oscillations are about a constant
level. For a line source, the pattern can be degraded in only
one plane and thus only 1/R effects are cancelled, leaving a
1/R envelope. Thus, the field oscillations for an unfocused

line source are about a 1/R line as shown by Ricardi and Hansen.

And so the power density btehavior for a focused line source can

be expected to be different also.

The quadratic phase approximation of the previous

section can be used for the line source with the result that

1

F = Jf g(x) exp jngzx2 dx ,

0

[ —




By making a substitution of y for xz, the formula becomes
1
Jr g—aiz— exp jngzy dy
0

This is now similar to the formula for pattern of a uniform

line source which is

1
F(u) = { cos wuy dy = EE%EEE
0

Graham noticed the similarity between these results, although
the uniform line source pattern only matches the real part of
the axial field expression. However, an approximate corres-
pondence can be made between the angular variable u and the
axial variable cz providing that the weighting factor which

is g(/¥)/ Jy can be made unity. The result is that an ampli-
tude excitation of [x ' gives approximately a sinc ;2 axial
distribution except that the 1/R factor is not incorporated.
Even lower axial forelobes and aftlobes can be produced by
using a | x| g(xz) distribution. For example, low axial lobes
can be produced by the Taylor distribution

r_.__~
'

g(x) = |x| I (7B Vl—xa)

Note, however, that the parameter ¢ is not convenient, and the
lobe behavior in terms of 8, or By, will exhibit lobes that

are squeezed together for small B and stretched out for large &.

These ideas have been used to determine behavior of
the square aperture with inverse tapers, using the more
accurate separated quadratic phase expression. Figures 20

-36-




through 22 show the axial power density for y = .025, .05,
and .1 and it may be seen, as expected, ttat the forelobes

are higher than the aftlobes because of the l/R2 effect. The
forelobe level is considerably below the roughly -13 db ob-
tained by Graham for line sources, because the square sources
here have elemental aperture areas in two dimensions that are
contributing to the out of phase interference that produces
the forelobes. For this reason, the forelobe level varies
more with y than for the line source case. In fact, it varies
from -22 db to -18 db for the three cases shown. A narrower
main lobe and higher fore and aftlobes can be obtained by put-
ting a pedestal on the inverse distribution, just as in cor-
ventional transverse pattern synthesis. For example, a pedestal
of .5 added to x gives a forelohe level of -18 db for the

v = .025 case. Lower distributions are obtained by using

the inverse Taylor distribution, as shown in Figures 23, 24,
and 25. Note that in these figures and the previous triad,
the figure captions for simplicity show 'uniform axial' and
'25 db Taylor axial', although the patterns only roughly fit
these. Thus, the inverse distribution plus pedestal allows
any reasonable forelobe level to be reached between those of
the pure inverse and the uniform distributions. And the inverse
Taylor allows even lower distributions to be realized. For

a given aperture, an axial sidelobe level and envelope can be
optimally synthesized, although the results are not expected
to be significantly different from those here. There is an
appreciable gain lcss in any inverse distribution, and this

is related to the increase in sidelobes in transverse patterns.
Both of these effects will be addressed in Section 2.2. Note
that for the inverse distribution the excitation is zero at
the center ci the aperture and +1 at the aperture edges.
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2.2 Transverse Power Density

Based on the evaluation of interpolation and inte-
gration methods in the Appendices, and due to errors at wide
angles and short distances in the Zernike-Jacobi and Fresnel
approaches alluded to in the Introduction, the transverse
field calculations are made using Gaussian integration. Again,
twn calculations have been made, with one utilizing the exact
phase square root term, while the other separates the phase
into x and y square root factors. The approximation in the
latter is evaluated by comparing results with the former for
L = 10x. Figure 26 shows the geometry, with a square aper-
ture L by L used. The focal distance is I, while the observa-
tion distance from the center is RO. Conventional spherical
coordinates are vsed. The field is given by:

1 1

F(u,v) = % JT g(x)g(y) exp -jk(R-r) dx dy

-1 -1

where g(x) is the Taylor linear one-parameter distribution
used in Section 2.1. Distances are:

2

R 2 2

(Rpu - Lx/2)% + (Rgu - Ly/2)? + Ry? cos? o

2 2

g’ + (Lx/2)2 + (Ly/2)?

a
1

and u = sin 6 cos ¢, v = sin 8 sin ¢. In all of these calcu-
lations, the ideal active element pattern (obliquity factor)
is utilized. Again, it is convenient to normalize focal dis-
tance in terms of far field distance, and observation distance

in terms of focal distance:




' o e v ‘

Figure 26

Transverse Geometry
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B:R—o 'Y=r0
To 2L2/x

Then the phase terms become:

-]
[

= Lzl_(ZByL/X)2 - 2By (ux+vy)L/x + (x2+y2)/4]

La}
)

= 1.2 [(2yL/A)2 + (x2+y2)/4}
For the approximate form the double integral is separated:

1 1

F(u,v) = % d{b g(x) exp —jk(Rx-rx) dx-i‘ g(y) exp -jk(Ry—ry) dy

-1 -1
where

sz - 12 [kZByL/A)Z - 28yuxL/X + x2/4]
r? =12 [(2yL/A)2 + x2/4]

The 32-step Gaussian integrator is accurate for D/} up to 15,
while the 128-step Gauscsian allows D/A up to 60. Figure 27
shows the far field pattern of a uniformly excited square
aperture 15 wavelengtks each side. Figures 28 and 29 show

the pattern in the focal plane for a nornalized focal distance
of y = .025, with Figure 28 from the exact calculation and
Figure 29 from the separ:c:ted phase approximation. Note that
even at this very close distance (focus less than one diameter
away) the exact transverse field sidelobe envelope drops cff
rapidly whereas the separated phase approximation has a side-
lobe envelope decay very close to that of the far field pattern.
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However, for the main lobe and first several sidelobes, the
approximate and exact results are very close, with the side-

lobe level being about 2 db higher. Figures 30 (exact) and 31
(approx.) show the pattern of the same aperture in the focal plane
at a focal distance of y = ,05. Now the near field sidelcbe inter-
ference process is least destructive with a resulting higher
sidelcbe envelope. The sidelobe level is now only about 1 db
below that of the far field. Figure 32 shows the pattern for

v = .1, and it is approaching the far field pattern. For the

60 wavelength aperture there is much less difference between

the exact and approximate patterns, and these are very close

to the far field pattern. Figure 33 shows the focal plane pat-
tern for pattern = .025 (at a distance of 3 diameters).

Turning now to the aperture with 25 db Taylor dis-
tribution along x and along y, Figure 34 shows the far field
pattern while Figures 35 and 36 shcw the exact and approximate
patterns. It is interesting to note that the main beam and
first couple of sidelobes are very close between exact and
approximate recults, and that the sidelobe level is roughly
6 db higher than the nominal -25 db. Again, the exact pattern
sidelobe envelope falls off rapidly due to the phase inter-
ference. At twice the distance, y = .02, the sidelobe level
degradation is only 3 db and the exact sidelobe envelope taper
is not as strong. For a y of .1, the sidelobe level degrada-
tion is less than 1 db and the envelope is closely that of the
far field pattern. For the 60 wavelength aperture the side-
lobe envelope is almost exactly that of the far field and the
sidelobe level is raised less than ] db, for , = .025 (a dis-
tance of 3 widths). See Figure 37. For , = .05 the pattern
is alwost exactly the far field pattern.

In Section 2.1.2 inverse aperture distributions whtich
produced lower axial forelobes and aftlobes were investigated.
It was anticipated that the transverse sidelobes would be
adversely affected. Figures 38, 39, and 40 show the focal plane

[,
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patterns of the inverse taper aperture for , = .025, .05,

and .1l. It can be seen thst the sidelobe level is high,
roughly -4 to -5 db. Further, the first sidelobe is a salient
in that it is considerably above the projected sidelobe enve-
lope. The second sidelobe, however, is above -10 db for

y = .025 and only approaches -13 db for y = .1. These results
are not expected to change significantly for larger apertures.
In addition, there is a significant gain loss associated with
this distribution; for the 15 wavelergth aperture it is 12 db.
Because of the high transverse sidelobes and sizeable loss of

gain, the inverse distribution is not a serious candidate.

The preceeding pattern plots were all at a constant
radius in the principal plane through the focus. It is impor-
tant to know what the behavior of the transverse field is for

other distances. Calculations cf the transverse pattern at

e ——— .

the peak of the first forelobe and first aftlobe have been
made. Figure 41 shows the transverse cut through the first
forelobe of the 15 wavelength square aperture, where the peak

in this figure corresponds to the forelobe height which is
14.4 db below the axial peak value. Similarly, Figure 42 is

a transverse pattern through the aftlobe where the peak in
Figure 42 is 25.7 db below the axial peak. Similarly, Figures
43 and 44 are transverse patterns through the highest forelobe
and aftlobe of the uniform 60 wavelength aperture. Note the
rapid falloff for this larger aperture. The scales on these
two graphs are respectively 14.1 db and 24 db below the axial
peak. The apertures with Taylor distribution do not exhibit
aftlobes for y as small as .025; the transverse patterns
through the highest forelobe are presented in Figures 45 and
46 for 15 and 60 wavelength apertures. Again, note the rapid
falloff for the larger aperture. The peaks in these figures
are 11.4 db and 9.5 db respectively below the axial peaks.

Thus the transverse patterns outside the axial main beam regions

are well behaved, especially so for larger apertures.
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3.0 CONCLUSIONS

The following conclusions result from this study.

A. Axial power density distribution (the axial main
lobe, the first few forelobes and aftlobes) is essen-
tially independent of aperture size in wavelengths.
The forelobe envelope taper, however, decreases more
rapidly with shorter 8 for larger apertures.

B. The first forelobe level for uniform excitation
is a strong function of focal distance; for example,
it is roughly -14 db for y = .025, roughly -12 db for
y = .05, roughly -9 db for y = .1, and rougkly 6 db
for vy = .2. The 25 dbt Taylor distributions produce
forelobe envelopes with roughly the same shape but at

a higher level and with much smaller oscillations.
For example, the level is roughly -11 db for y = .025,
-8 db for y = .05, and -5 db for vy = .1.

C. Inverse aperture distributions (high at edge, low
in center) can reduce forelobe and aftlobe levels below
those of uniform excitation, but the efficiency is low
(of the order of -12 db) and the transverse sidelobe
level high (of the order of -3 db). This type of dis-

tribution is not attractive.

D. The forelobes and aftlobes of the uniform exci-
tation are probably satisfactory for most applications,
and this distribution has the further advantages that
the transverse sidelobes are not high and that the

efficiency is excellent.

E. The peak power density along the axis does not
occur at the focus because of the 1/R2 effect. For
very close focus (small y) the axial peak is close to
the focus, but as the focus moves away, the axial peak
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moves away much more slowly so that the separation
between the two increases. From a systems stand-
point, the important parameter is power density versus
distance with the latter normalized to 2L2/A. The

peak power density available above the value at 2L2/A
is a function only of this normalized distance (By).
Increases of more than 30 db are available for short
focal distance and large apertures. These data (Figure
19) allow the systems designer tc trade cff aperture

size, frequency, focal distance, and power density.

The transverse patterns, both through the axial
peak, and through the closest forelobe and aftlobe
peaks, are well behaved, with rapid falloff for all but
modest L/X. For short distance (small u) the first
several sidelobes increased, but again for large uni-
formly excited apertures this sidelobe degradation was
small. The 25 db Taylor distribution had less than a

"db for apertures 60 wavelengths and larger.

The Gaussian integrators give an acceptable com-
bination of allowable aperture width and running time,
although all the calculations were slow. The exact
phase integral calculations give lower far out side-
lobes than the far field pattern or than the approxi-
mate separated phase calculation, for close focal
distances. This is due to sidelobe phase interference
at the short distances. For all calculations but those
of far out sidelobes, the separated phase calculation

is adequate, and much faster.
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APPENDIX A

FIELD CALCULATION BY SAMPLING INTERPOLATION

The field of an antenna, far or near, can be calcu-
lated by starting with field values at some number of discrete
points, obtained by FFT or other means, then by using sampling
functions to provide all field values in between. Basic theory
was developed by Whittaker (1915), Nyquist (1928), Shannon
(1949), and others. Extension to multiple dimensions was made |
by Petersen and Middleton (1962). Application to optics was '
by Barakat (1964) and to antennas by Ruze (1964) and Bucci and
Franschetti (1980, 1981 A & B). Typically, at least one data
point per pattern lobe is needed, and the interpolation ic
performed by a series of interpolation functions; for a linear
aperture in the far field these functions are sinc type. In |
the near field they are basically Fresnel Integral functions.
Circular apertures use a Jl(x)/x far field function, while the
near field function is basically a Lommel function of two

variables.

To evaluate the ability of this technique to produce
patterns, a Taylor one-parameter line source was used (Hansen,
1983). This allows various sidelobe levels to be evaluated.
In addition, expanded sampling is incorporated, where the ,
virtual aperture is increased by a small factor with this larger {

aperture sampled. The field is given by:

all/ A

N ,
F(u) AZQ F(%ﬂ) sinc (2au-n)n
WA ‘

n=-aL/X i ‘

where the interpolation function is the sinc (2.u-n)~, and the

F( ) are the Taylor pattern values. As usual, u = (L/+) sin =
while o = expanded aperture /L, and L is the aperture length.

The Taylor values are:




sinc Vn2/4u2-B2 , n/2x > B

sinhc 7 VBz—n2/4u , B > n/2a

Calculations were made on short (6 and 6.5X) line
sources, as these pose the most difficult test. For a uniform
line source, where the sidelobe peaks are uniformly spaced at
u = n, one sample per lobe (at the sidelobe peaks) gave an
excellent pattern. Of course, the Taylor one-parameter pat-
tern is available in simple closed form, and this was used
for comparison. Patterns with lower sidelobes were poorly
represented by one sample per lobe. Sidelobes would break up
into several lobes, and the sidelobe envelope was irregular.
To overcome this limitation, two samples per lobe were used,
and the 2 in the interpolation function argument indicates
this. Good results were obtained this way; Figures A1 and
A2 show a 6 wavelength, 30 db Taylor source with Figure Al
that calculated using interpolation and Figure A2 the exact
pattern. There is only a slight discrepancy in the last side-
lobe. The fit may be improved through proper choice of a, but
this value depends on the source length and sidelobe level.
For example, using the 30 db Taylor case, a = 1.05 gives best
fit for L = 6) while o« = 1 is best for L = 6.5Xx. With a uni-
form line source, a = 1.1 gives best fit for L = 6) while
a = 1.05 or 1.2 are best for L = 6.5x. Thus excellent patterns
can be produced using proper interpolation functions. See

Appendix C for codes.

Next the computational efficiency of the interpola- -
tion calculation will be evaluated. Again, consider a linear

aperture of length L. The number of pattern sample points, at |

two per spatial wavelength is 4L/); since wnu = 27(L/2)) sin =
the corresponding interval is L/4X. Thus the pattern must be !
computed at 4L/) values of spatial frequency. These values

———— —— .




1y 2ar314
T=v41V ‘NH3ILLvd H07AVL H1S 80 0& ‘AM 3

937 'JIONY HLINWIZV
0€ 0 0E- 08- 06-
T T T T J_l T T 7 T T _ T 1 T T T 06—
T
—4
]
Tov-
R
] >
\MOMIM 1
L m o
- w AM“
i
B —
m
] <
-1 m
. :al
oz-8
ot~
u




06

2V 2an31y

NH3L1Vd 33HN0OS 3NIT HOTAVL H1S 8O 0O€
930 ITONV HINWIZV

09 OE 0

OE-

‘AM S

09-

T LR 1 ~\— 1 T T T T —J L) T Aw I T

T

T

T

T

L

J_LllllllllllllljlllllllllLllLll_llllllllllllj;l;lll

ov-

[
X

13A37 NH3L11vd
A=

=
¢
‘80

01 -




=T RARTTSTR T e

are then the coefficients in the sampling sum; each new pat-
tern point to be computed requires a sum of 4L/ terms, using
these coefficients and the sampling (interpolation) function.

A symmetric pattern reduces the coefficient calculations to
half. But there are now two sampling functions in each series
term. There are then several steps: for each sampling point
calculate pattern (this may utilize FFT or may need numerical
integration or an equivalent array summation); then for each
observation point sum up coefficients times sampling functions.
In contrast, the Gaussian integration requires a number of
steps roughly equal to D/a. Each observation point then
requires a sum over integrand times constant values, with D/X
terms. Romberg utilizes a simpler sum but the number of terms
is roughly 4 times. And finally the replacement of the aper-
ture by an array of %/4 spacing requires a sum of 4D/X, about
the same as Romberg. The sampling-interpolation procedure is
then attractive only when, a) the coefficients (pattern samples)
are easily obtained, and b) the range of pattern values needed

is much less than the total range.

—————— e
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APPENDIX B

EVALUATION OF NUMERICAL INTEGRATION METHODS

The interpolation algorithm requires that the field
be known at each of a numer of grid points. When the far
field is of interest, these points can sometimes be calculated
via FFT. However, in the near field it is necessary to use
other techniques. As mentioned elsehwere in this report,
results at wide angles almost always require numerical inte-
gration over the aperture, or something equivalent. The pur-
pose of this section is to compare and evaluate for large
epertures three efficient and widely-used methods. These are
the Romberg with fixed order, the Gaussian with 32 steps, and

aperture summation using quarter-wave spacing.

Romberg integration is adaptive trapezoidal in nature,
where the parameters calculated for each layer of subdivision
are saved for use in the next layer. It is thus highly effi-
cient. 1In the adaptive form the subdivision continues until
the projected error is less than a specified value. A simpler

version used here is not adaptive in that the order is speci-

fied in advance. The running time closely doubles for each
unit increase in order. This subroutine is faster than the
adaptive version and, with experience, the proper order can
be picked in advance. For large order, however, many values

must be calculated and stored, which makes Romberg inefficient.

Gaussian quadrature is one of the oldest methods and
evaluates the integral at a set cf uneverly spaced points with
weight functions calculated from orthogonal polynomials. See
Davis and Rabinowitz (1967). This procedure is a special case

of the non-linear transformations developed by Shanks (1955).

Tables for values up to 512 steps are by Stroud and Secrest
(1966) .
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Another method is to replace the integral by a sum
where at least two samples per wavelength are used. It will
appear later that for satisfactory accuracy at angles near
endfire it is necessary to use four samples per wavelength.
The resulting sum may incur accumulated roundoff errors for
very large linear apertures or for moderately large planar
apertures. As the number of terms in the sum becomes large,
it may be necessary to utilize double precision.

The comparison test was performed on a Taylor one-
parameter line source of varying length. The integral expres-
sion and its discrete counterpart are

F(u) = IO(nB l-x2) cos mux dx

z O%H

[

F(u) = A, + 2 A.n cos 2nmu , N odd

™M

o]
[
—

where the An are the Taylor amplitude coefficients. The form
shown is for quarter-wave spacing in the sum although half-wave k

spacing was also used. This particular pattern is convenient
as it is easily calculated in closed form, see Hansen (1983),
so that the numerical results can be compared with the exact

space factor. Calculations were made for u = 25 and 50, where
u = (L/X) sin 6. For u = 25, the Romberg results showed high
sidelobes in the vicinity of u = 16 for order 5, and an oscil-
lation of 2 db of sidelobe envelope in the same region for
order 6. Order 7 gave excellent results with a relative time
of 180. The Gaussian with 32 steps gave excellent results for
u = 25 with a relative time of 52 but produced high and heavily
distorted sidelobes for the u = 50 case at roughly u = 30, with

-B2-




a relative time of 98. See Figure Bl. Similarly, the Romberg
for the larger range requires a much higher order and a doubling
of its time for each increase of one. However, the Romberg
order is simple, and the order is easily increased while dou-
bling the Gaussian numer of steps requires a new program with
new coefficients. Thus, although it is faster than the Romberg,
it is more difficult to prepare. The array calculations using
half-wave spacing gave excellent results out to roughly u = 10
with the relative time of 41. With quarter-wave spacing the
results were excellent over the entire range with a relative
time of 73 for u = 25. This time, of course, should increase
directly with the aperture length.

Thus, for small apertures the 32-step Gauss is the
most efficient and is satisfactory until the aliasing due to
sampling appears. A 128-step Gauss allows aperture widths up
to 601 tco be calculated.
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APPENDIX C
COMPUTER CODES

CCCCCCCCeeeeeeeeceeeececececececeececeeccecccccecececcececeeccececceccecececceecececceceecccccesece

FOCSQAX USE TAYBCALC,ROOTW,TAYWFUN,BESI,
FOCSQGQ32C,FOCSQFCR,FOCSQGQ32D, FOCSQFCT FSQ.MC

CALC ON-AXIS FIELD OF SQUARE FOCUSED APERTURE

TAYLOR ONE-PARAMETER DISTRIBUTIONS USED IN X AND Y

USES EXACT PHASE INTEGRAL WITH GAUSSIAN INTEGRATION ALONG X & Y
IDEAL ACTIVE ELEMENT PATTERN USED IN INTEGRATION

FOCAL DISTANCE NORMALIZED TO RO=2*L*L/WV
GAMA=RO*WV/2*L*L

RATIO OF DISTANCE TO FOCAL DISTANCE IS BETA=R/R0O
J.WILLIS, P-753, JULY 1983

C
C
C
C
C
C
C
C
C
C
C
C
C
C
PREPARED BY R.C.HANSEN C
C
C

CCCCCCCCCCCCCeeeeceeceececeeceeceecceeceeececceccececceeececceceecccececececcceccecececccce

eNeXeKeKkeXeReXeKeiekeXeKeKe e NeXeXe)

DIMENSION E(501)

DOUBLE PRECISION BGL,BGL2,GL2
COMPLEX ED, EE

REAL LWV,KL

COMMON PB,KL,BGL2,GL2

COMMON /TAY/ PI,SLR
PI=3.1415926536

PR=180/PI

WRITE (12.900)

900 FORMAT (1X, "PROGRAM FOCSQAX",/)
100 ACCEPT "L/WV,SLR ",LWV,SLRD
IF (LWV.EQ.0) GO TO 990

KL=2*PI*LWV |
C CALC TAYLCR PARAMETERS f
CALL TAYB(SLRD,B) ]
PB=PI*B (
TYPE "EO=",EQ
c INPUT FOCAL REGION PARAMETERS
ACCEPT "BETAM, GAMA, NPOINTS ",BETAM,GAMA, NPT
DO 160 I=2,NPT
BETA=(I-1.) *BETAM/ (NPT-1.)
BGL=2 .DO*BETA*GAMA*LWV
BGL2=BGL*BGL
GL2=(2.DO*GAMA*LWV) **2

5 c CALC FIELD AT POINT USING GAUSSIAN INTEGRATION
{ CALL GQ32C(0.,1.,ED)
I EE=ED/BETA

E(I)=20*ALOG10(CABS(EE)/(E0O*EQO) +1E-6)
TYPE I,BETA,E(I)
160 CONTINUE
' 4 A E(1)=-40

P e ey




170
180

950

980
990
995

EN=E (1)

DO 170 I=2,NPT

IF (E(I).GT.EN) EN=E(I)

DO 180 I=1,NPT
E(I)=E(I)~-EN

TYPE "EN=",EN

OPEN 1,"PLOTFILE", ERR=980
WRITE (1,950) (E(L),L=1,NPT)
CLOSE 1

FORMAT (El12.6)

GO TO 100

STOP "FILE OPEN ERROR"
WRITE (12,995)

FORMAT (1X,"<FF>")

END




C FOCSQFCR; USE FOR FOCSQAX

C OUTER GAUSSIAN INTEGRAND

COMPLEX FUNCTION FCR(X)

DOUBLE PRECISION BGL2,GL2
COMPLEX GG

REAL KL

COMMON PB,KL,BGL2,GL2

COMMON /FUN/ XX

XX=X

CALL GQ32p(0.,1.,GG)

CALL BESI (PB*SQRT(1-X*X),0,BI,IF)

FCR=BI*GG

RETURN

END
C FOCSQFCT; USE FOR FOCSQAX
C INNER GAUSSIAN INTEGRAND

COMPLEX FUNCTION FCT(Y)

DOUBLE PRECISION F,BGL2,GL2
COMPLEX EXP

REAL KL

COMMON PB,KL,BGL2,GL2

COMMON /FUN/ X

F=.25D0* (X*X+Y*Y)

EXP=CEXP (CMPLX (0., SNGL (KL* (DSQRT (BGL2+F) -DSQRT (GL2+F)))))
CALL BESI(PB*SQRT(1l-Y*Y),0,BI,IF)
AEP=1./(1.+SNGL(F/BGL2)) **,25
FCT=BI*EXP*AEP

RETURN

END

RLDR FOCSQAX TAYBCALC ROOTW BESI TAYWFUN FOCSQGQ32C”
FOCSQFCR FOCSQGQ32D FOCSQFCT E@FLIBE@
FOCSQAX




FOCSQGQ32C; USE FOR FOCSQAX
SUBROUTINE GQ32C (XL,XU,Y)

32 POINT GAUSSIAN QUADRATURE INTEGRATION ROUTINE

COMPLEX FCR,Y

A=.5* (XU+XL)

B=XU-XL

C=.49863193*B
Y=.35093050E-2* (FCR(A+C) +FCR(A-C))
C=.49280575*B
Y=Y+.81371974E-2* (FCR(A+C) +FCR(A-C))
C=.48238112*B
Y=Y+.12696032E-1* (FCR(A+C) +FCR(A-C))
C=.46745303*B
Y=Y+.17136931E-1* (FCR(A+C) +FCR(A-C))
C=.44816057*B
Y=Y+.21417949E-1* (FCR(A+C) +FCR(A-C))
C=.42468380*B
Y=Y+.25499029E-1* (FCR(A+C) +FCR(A-C) )
C=.39724189*B
Y=Y+.29342046E-1* (FCR(A+C) +FCR(A-C))
C=.36609105*B
Y=Y+.32911111E-1* (FCR(A+C) +FCR(A-C))
C=.33152213*B

Y=Y+.36172897E-1* (FCR(A+C)+FCR(A-C))
C=.29385787*B
Y=Y+.39096947E-1* (FCR(A+C) +FCR(A~C))
C=.25344995*B
Y=Y+.41655962E-1* (FCR(A+C) +FCR(A-C))
C=.21067563*B
Y=Y+.43826046E~-1* (FCR (A+C) +FCR(A-C))
C=.16593430*B
¥Y=Y+.45586939E-1* (FCR(A+C) +FCR(A-C))
C=.11964368*B
Y=Y+.46922199E-1* (FCR(A+C) +FCR(A-C))
C=.072235980*B
Y=Y+.47819360E~1* (FCR(A+C) +FCR(A-C))
C=.024153832*B

Y=B*(Y+.48270044E~1* (FCR(A+C}+FCR(A-C)))

RETURN
END

L e e




FOCSQGQ32D; USE FOR FOCSQAX

SUBROUTINE GQ32D(XL,XU,Y)

32 POINT GAUSSIAN QUADRATURE INTEGRATION ROUTINE
COMPLEX FCT,Y

A=.5% (XU+XL)

B=XU-XL

C=.49863193*B
Y=.35093050E-2* (FCT (A+C) +FCT (A-C) )
C=.49280575*B i
Y=Y+.81371974E-2* (FCT (A+C) +FCT (A-C) ) |
C=.,48238112*B
Y=Y+.12696032E-1* (FCT (A+C) +FCT (A-C))
C=.46745303*B

Y=Y+.17136931E-1*(FCT (A+C)+FCT(A-C))
C=.44816057*B
Y=Y+.21417949E-1*(FCT (A+C) +FCT (A-C))
C=.42468380*B
Y=Y+.25499029E-1* (FCT (A+C) +FCT (A-C))
C=.39724189*B
Y=Y+.29342046E-1* (FCT (A+C) +FCT (A-C))
C=.36609105*B

Y=Y+.32911111E-1* (FCT (A+C) +FCT (A~C))
C=.33152213*B
Y=Y+.36172897E-1* (FCT (A+C) +FCT (A~C))
C=.29385787*B
Y=Y+.39096947E-1* (FCT (A+C) +FCT (A-C) )
C=.25344995*B
Y=Y+.4165596 2E-1* (FCT (A+C) +FCT (A-C) )
C=.21067563*B
Y=Y+.43826046E-1* (FCT (A+C) +FCT (A-C))
C=.16593430*B
Y=Y+.45586939E-1* (FCT (A+C) +FCT (A~C))
C=.11964368*B
Y=Y+.46922199E-1* (FCT (A+C) +FCT (A-C))
C=.072235980*B
Y=Y+.47819360E-1* (FCT (A+C) +FCT (A-C))
C=.024153832*B

Y=B*(Y+.48270044E-1*(FCT(A+C) +FCT (A~-C))) ']

RETURN
END

ramr e
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FOCANTPAT; USE TAYBCALC,ROOTW,TAYWFUN,BESI,
FOCANTFCR,FOCANTFCT,FOCGQ32C,FOCGQ32D FOC.MC

CALC NEAR FIELD PATTERNS OF SQUARE FOCUSED APERTURE

TAYLOR ONE-PARAMETER DISTRIBUTIONS USED IN X AND Y

USES EXACT PHASE INTEGRAL WITH GAUSSIAN INTEGRATION ALONG X & Y
IDEAL ACTIVE ELEMENT PATTERN USED IN INTEGRATION

FOCAL DISTANCE NORMALIZED TO RO=2*L*L/WV
GAMA=RO*WV/2*L*L

RATIO OF DISTANCE TO FOCAL DISTANCE IS BETA=R/R0
J.WILLIS, P-753, JULY 1983

C
C
C
C
C
C
C
C
c
C
C
C
C
C
PREPARED BY R.C.HANSEN C
C
C
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s NelekeleKkeXeKeKeXeleloReXe Koo KoK e

|
DIMENSION E(501) |
DOUBLE PRECISION BGL,BGL2,GL2
COMPLEX ED,EE
REAL LWV,KL
COMMON PB,KL,BGL,BGL2,GL2,U,V
COMMON /TAY/ PI,SLR
PI=3.1415926536 .
PR=180/P1 '
WRITE (12.900)
900  FORMAT (1X, "PROGRAM FOCANTPAT",/)
100  ACCEPT "L/WV,SLR  ",LWV,SLRD
IF (LWV.EQ.0) GO TO 990
IF (LWV.GT.20.) STOP "L/WV MUST BE <= 20"
KL=2*PI*LWV
Cc CALC TAYLOR PARAMETERS
CALL TAYB(SLRD,B) H
PB=PI*B
CALL BESI(PB,0,EQ,IF)
TYPE "E0=",E0 |
C INPUT FOCAL REGION PARAMETERS !
ACCEPT "BETA, GAMA " ,BETA,GAMA R
BGL=2.DO*BETA*GAMA *LWV |
BGL2=BGL*BGL ﬁ
GL2=(2.DO*GAMA*LWV) **2 !
WRITE (12,910) BETA,GAMA 1

910 FORMAT (1X,"BETA=",F7.2," GAMMA=",F7.2,/)

C INPUT PATTERN DATA

150 ACCEPT "PHI, NPOINTS ",PH,NPT o
SP=SIN(PH/PR) |
CP=COS (PH/PR)
DO 160 I=1,NPT
TH=90.*(I-1.)/(NPT-1.)
ST=SIN(TH/PR)
CT=COS (TH/PR) -
U=ST*CP H




(@]

160

170

180

950

980
990
995

V=ST*SP

CALC PATTERN AT POINT USING GAUSSIAN INTEGRATION
CALL GQ32C(-1.,1.,ED)
E(I)=20*ALOGl10(.25*CABS(ED)/(EO*EO)+1E-6)
TYPE I,TH,E(I)

CONTINUE

EN=E(1)

DO 170 I=2,NPT

IF (E(I).GT.EN) EN=E(I)

DO 180 I=1,NPT

E(I)=E(I)-EN

TYPE "EN=",EN

OPEN 1,"PLOTFILE", ERR=980
WRITE (1,950) (E(L),L=1,NPT)
CLOSE 1

FORMAT (E12.6)

GO TO 100

STOP "FILE OPEN ERROR"

WRITE (12,995)

FORMAT (1X,"<FF>")

END

RLDR FOCANTPAT TAYBCALC ROOTW TAYWFUN BESI FOCANTFCR"
FOCANTFCT FOCGQ32C FOCGQ32D €FLIB@
FOCANTPAT




C FOCANTFCR; USE FOR FOCANTPAT
C OUTER GAUSSIAN INTEGRAND
COMPLEX FUNCTION FCR(X)
DOUBLE PRECISION BGL,BGL2,GL2
COMPLEX GG
REAL KL
COMMON PB,KL,BGL,BGL2,GL2,U,V
COMMON /FUN/ XX
XX=X
CALL GQ32c(-1.,1.,GG)
CALL BESI(PB*SQRT(1-X*X),0,BI,IF)

FCR=BI*GG

RETURN

END
C FOCANTFCT; USE FOR FOCANTPAT
C INNER GAUSSIAN INTEGRAND

COMPLEX FUNCTION FCT(Y)

DOUBLE PRECISION BGL,BGL2,GL2,Fl,F2,RD
COMPLEX EXP

REAL KL

COMMON PB,KL,BGL,BGL2,GL2,U,V

COMMON /FUN/ X

F1=DBLE (X*U+Y*V)

F2=.25D0* (X*X+Y*Y)

RD=DSQRT (BGL2~-BGL*F1+F2)

EXP=CEXP (CMPLX (0., SNGL (KL* (RD-DSQRT (GL2+F2)))))
CALL BESI(PB*SQRT(1-Y*Y),0,BI,IF)
AEP=SQRT (SNGL (BGL*SQRT (1.-U*U-V*V}/RD))
FCT=BI*EXP*AEP

RETURN

END
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FOCANTPAT1; USE TAYBCALC,ROOTW,TAYWFUN,BESI,FOCANT1FCR.,
FOCANT1FCT, GAUSS32C,GAUSS128DC PCl.MC

CALC NEAR FIELD PATTERNS OF SQUARE FOCUSED APERTURE

TAYLOR ONE-PARAMETER DISTRIBUTIONS USED IN X AND Y

PHASE INTEGRAL SPLIT INTO X & Y FACTORS; GAUSSIAN INTEGRATION
IDEAL ACTIVE ELEMENT PATTERN USED IN INTEGRATION

FOCAL DISTANCE NORMALIZED TO RO=2*L*L/WV
GAMA=RO*WV/2*L*L

RATIO OF DISTANCE TO FOCAL DISTANCE IS BETA=R/RO
J.WILLIS, P-753, JULY 1983

C
o
C
o
C
C
C
C
C
C
C
C
C
C
PREPARED BY R.C.HANSEN C
C
C

eNeXeKeXeKe KXo XeXeXeXeXeNeReXoRel e
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DIMENSION E(1001)
DOUBLE PRECISION COMPLEX EUU,EVV
DOUBLE PRECISION BGL,BGL2,GL2
COMPLEX EE,EU,EV
REAL LWV,KL
COMMON PB,KL,BGL,BGL2,GL2,W
COMMON /TAY/ PI,SLR
PI=3.1415926536
PR=180/PI
. WRITE (12,900)
. 900  FORMAT (1X,"PROGRAM FOCANTPAT1",/)

100 ACCEPT “L/WV,SLR ",LWV,SLRD
IF (LWV.EQ.0) GO TO 990
KL=2*PI*LWV _

o CALC TAYLOR PARAMETERS
CALL TAYB(SLRD,B)
PB=PI*B
CALL BESI(PB,0,EC,IF)
TYPE "EO0=",EQ

c INPUT FOCAL REGION PARAMETERS
ACCEPT "BETA, GAMA  ",BETA,GAMA
BGL=2.DO*BETA*GAMA*LWV
BGL2=BGL*BGL
GL2=(2.DO*GAMA*LWV) **2
WRITE (12,910) BETA,GAMA

910 FORMAT (1X,"BETA=",F7.2," GAMMA=",F7.2,/)

C INPUT PATTERN DATA

150 ACCEPT "PHI, NPOINTS " ,PH, NPT
SP=SIN(PH/PR)
CP=COS (PH/PR)

DO 160 I=1,NPT
TH‘90-*(I-1.)/(NPT-1.)
ST=SIN(TH/PR)

CT=COS (TH/PR)

U=ST*CP




120

125
160

170
180

950

980
990
995

V=ST*SP

CALC PATTERN AT POINT USING GAUSSIAN INTEGRATION
W=U

IF (LWV.GT.15.) GO TO 120
CALL GQ32C(’10'1.IEU)

W=V

CALL GQ32C(-1.,1.,EV)
EE=EU*EV

GO TO 125

W=V

CALL GQ128(-1.D0,1.D0,EVV)
EE=DCXCX (EUU*EVV)
E(I)=20*ALOG10(.25*CABS(EE)/ (EO*EQ) +1E-6)
TYPE I,TH,E(I)

CONTINUE

EN=E (1)

DO 170 I=2,NPT

IF (E(I).GT.EN) EN=E(I)

DO 180 I=1,NPT

E(I)=E(I)-EN

TYPE "EN=",EN

OPEN 1,"PLOTFILE", ERR=980
WRITE (1,950) (E(L),L=1,NPT)
CLOSE 1

FORMAT (E12.6)

GO TO 100

STOP "FILE OPEN ERROR"
WRITE (12,995)

FORMAT (1X,"<FF>")

END




C FOCANTIFCR; USE FOR FOCANTPAT1
C GAUSSIAN INTEGRAND
DOUBLE PRECISION COMPLEX FUNCTION FCR(X)
DOUBLE PRECISION COMPLEX EXP
' DOUBLE PRECISION BGL,BGL2,GL2,F
REAL KL
COMMON PB,KL,BGL,BGL2,GL2,W
. F=,25D0*X*X
EXP=DCEXP (DCMPLX (0.D0,KL* (DSQRT (BGL2-BGL*W*X+F ) -DSQRT (GL2+F) ) ) )
CALL BESI(PB*SQRT(1-X*X),0,BI,IF)
AEP=1./(1.+SNGL(F/BGL2)) **_ 25
FCR=BI*EXP*AEP
RETURN
END

C FOCANTFCT; USE FOR FOCANTPAT
C INNER GAUSSIAN INTEGRAND
COMPLEX FUNCTION FCT(Y)
- DOUBLE PRECISION BGL,BGL2,GL2,Fl,F2,RD
' COMPLEX EXP
. REAL KL
COMMON PB,KL,BGL,BGL2,GL2,U,V
COMMON /FUN/ X
Fl=DBLE (X*U+Y*V)
F2=,25D0* (X*X+Y*Y)
RD=DSQRT (BGL2-BGL*F1+F2)
EXP=CEXP (CMPLX (0., SNGL (KL* (RD-DSQRT (GL2+F2))})))
CALL BESI(PB*SQRT(1-Y*Y),0,BI,IF)
AEP=SQRT (SNGL (BGL*SQRT (1.-U*D-V*V) /RD) )
FCT=BI*EXP*AEP
RETURN
END

RLDR FOCANTPAT1 TAYBCALC ROOTW BESI TAYWFUN"
. POCANT1FCR FOCANT1FCT GAUSS32C GAUSS128DC @FLIBRE
¢ FOCANTPAT1




GAUSS128DC; GAUSSIAN QUADRATURE 128 STEPS, DOUBLE PRECISION COMPLEX

SUBROUTINE GQ128(XL,XU,Y)

DOUBLE PRECISION COMPLEX FCR,Y

DOUBLE PRECISION XL,XU,A,B,C

A=.5D0* (XU+XL)

B=XU-XL

C=.49991244397356D0*B
¥=,224690480146045D-3* (FCR(A+C) +FCR(A-C))
C=.49953872998868D0*B
Y=Y+.52290633967017D-3* (FCR(A+C) +FCR (A-C))
C=.49886662431275D0*B
¥Y=Y+.82125150933451D-3* (FCR(A+C) +FCR(A-C))
C=.49789637926749D0*B
Y=Y+,11191442154813D-2* (FCR(A+C) +FCR(A-C))
C=.49662855645010D0*B
Y=Y+.14163757357289D-2* (FCR(A+C) +FCR(A-C))
C=.49506390924586D0*B
Y=Y+.17127630204551D-2* (FCR(A+C) +FCR(A-C))
C=.49320337136229D0*B
Y=Y+.20081274918693D-2* (FCR(A+C) +FCR (A-C))
C=.49104805421785D0*B
Y=Y+.23022921283515D-2* (FCR(A+C) +FCR(A-C))
C=.48859924573295D0*B
Y=Y+.25950809163381D-2* (FCR(A+C) +FCR(A-C))
C=.48585840937356D0*B
Y=Y+.28863187714328D-2* (FCR(A+C) +FCR(A=C))
C=.48282718321598D0*B
Y=Y+.31758315808536D-2* (FCR (A+C) +FCR(A-C))
C=.47950737892684D0*B
Y=Y+.34634462834494D-2* (FCR(A+C) +FCR(A-C))
C=.47590098067063D0*B
Y=Y+.37489909628273D-2* (FCR (A+C) +FCR (A-C))
C=.47201014391511D0*B
Y=Y+.40322949452430D-2* (FCR(A+C) +FCR(A-C))
C=.46783719413895D0*B
Y=Y+.43131888993083D-2* (FCR(A+C) +FCR(A-C))
C=.46338462543947D0*B
Y=Y+.45915049358304D-2* (FCR(A+C) +FCR(A~C))
C=.45865509904048D0*B
Y=Y+.48670767075034D-2* (FCR(A+C) +FCR(A-C))
C=.45365144170087D0*B
Y=Y+.51397395079161D-2* (FCR(A+C) +FCR(A~C))
C=.44837664402457D0*B
Y=Y+.54093303697515D-2* (FCR(A+C) +FCR(A-C))
C=.44283385867269D0*B
Y=Y+.56756881620402D~2* (FCR (A+C) +FCR(A~C))
C=.43702639847901D0*B
Y=Y+.59386536863701D~2* (FCR(A+C) +FCR(A-C))
C=.43095773446977D0*B
Y=Y+.61980697719754D-2* (FCR (A+C) +FCR(A~C))
C=.42463149378898D0*B
Y=Y+.64537813696336D-2* (FCR(A+C) +FCR(A-C))
C=.41805145753045D0*B
Y=Y+.67056356443081D~2* (FCR(A+C) +FCR(A~C))
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C=.41122155847782D0*B
Y=Y+.69534820664755D-2* (FCR(A+C) +FCR(A-C))
C=.40414587875395D0*B
Y=Y+.71971725020834D-2* (FCR(A+C) +FCR(A-C))
C=.39682864738108D0*B
Y=Y+.74365613010731D-2* (FCR(A+C) +FCR(A-C))
C=,38927423775320D0*B
Y=Y+.76715053844326D-2* (FCR(A+C)+FCR(A~C))
C=.38148716502204D0*B
Y=Y+.79018643296996D-2* (FCR (A+C) +FCR(A~C))
C=,37347208339853D0*B
Y=Y+.81275004548926D~-2* (FCR(A+C)+FCR(A~C))
C=.36523378337095D0*B
Y=Y+.83482789007996D-2* (FCR(A+C) +FCR (A~C))
C=.35677718884179D0*B
Y=Y+,.85640677115557D-2* (FCR(A+C) +FCR(A~C))
C=.34810735418475D0*B
Y=Y+.87747379135588D-2* (FCR(A+C)+FCR(A-C))
C=.33922946122385D0*B
Y=Y+.89801635925043D~-2* (FCR(A+C) +FCR(A-C))
C=.33014881613632D0*B
Y=Y+.91802219686657D~2* (FCR(A+C) +FCR(A-C))
C=.32087084628115D0*B
Y=Y+.93747934702723D~2* (FCR(A+C) +FCR(A-C))
C=.31140109695529D0*B
Y=Y+.95637618049754D~-2* (FCR(A+C) +FCR(A-C))
C=.30174522807927D0*B
Y=Y+.97470140293533D~-2* (FCR(A+C) +FCR(A-C))
C=.29190901081438D0*B
Y=Y+.99244406164154D-2* (FCR(A+C) +FCR(A-C))
C=.28189832411330D0*B
Y=Y+.10095935521065D~1* (FCR (A+C) +FCR(A~C))
C=.27171915120640D0*B
Y=Y+.10261396243480D-1* (FCR(A+C) +FCR(A~C))
C=.26137757602558D0*B
Y=Y+.10420723890375D-1* (FCR(A+C) +FCR(A~C))
C=.25087977956807D0*B
Y=Y+.10573823234110D-1* (FCR(A+C) +FCR(A-C))
C=.24023203620208D0*B
Y=Y+.10720602769604D-1* (FCR(A+C) +FCR(A-C))
C=.22944070991677D0*B
Y=Y+.10860974769026D-1* (FCR(A+C) +FCR(A~C))
C=,21851225051855D0*B
Y=Y+.10994855334230D-1* (FCR(A+C) +FCR(A~C))
C=.20745318977613D0*B
Y=Y+.11122164446900D~-1* (FCR(A+C) +FCR(A~C))
C=.19627013751663D0*B
Y=Y+.11242826016372D-1* (FCR(A+C) +FCR(A~C))
C=,18496977767492D0*B
Y=Y+.11356767925118D-1* (FCR(A+C)+FCR(A~C))
C=.17355886429881D0*B
Y=Y+.11463922071843D-1* (FCR(A+C) +FCR(A~C))
C=.16204421751220D0*B
Y=Y+.11564224412193D-1* (FCR(A+C) +FCR(A-C))
C=.15043271943883D0*EB




Y=Y+.11657614997031D-1* (FCR(A+C) +FCR(A-C))
C=,13873131008895D0*B
¥Y=Y¥+.11744038008269D~1* (FCR (A+C) +FCR(A-C))
C=.12694698321134D0*B
Y=Y+.11823441792224D-1* (PCR(A+C) +FCR(A-C))
C=.11508678211332D0*B
Y=Y+.11895778890501D-1* (FCR(A+C) +FCR(A-C))
C=.10315779545103D0*B
Y=Y+.11961006068352D-1* (FCR(A+C) +FCR(A-C))
C=.91167152992668D-1*B
¥Y=Y+.12019084340512D-1* (FCR(A+C) +FCR(A~C))
C=.79122021357112D-1*B
Y=Y+.12069978994509D-1* (FCR(A+C) +FCR(A-C))
C=.67029599730594D~-1*B
Y=Y+.12113659611407D-1* (FCR(A+C) +FCR(A-C))
C=.54897115563822D-1*B
Y=Y+.12150100083986D-1* (FCR(A+C) +FCR(A-C))
C=.42731820252257D~-1*B
Y=Y+.12179278632345D-1* (FCR(A+C) +FCR(A-C))
C=.30540984802069D-1*B
Y=Y+.12201177816925D-1* (FCR(A+C) +FCR(A-C))
C=.18331895484366D-1*B
Y=Y+.12215784548925D-1* (FCR(A+C) +FCR(A-C))
C=.61118494803079D-2*B
Y=B*(Y+.12223090098131D-1* (FCR(A+C) +FCR(A-C)))
RETURN

END




(e NeXp Xy

900
100

920

105
925

115

116

118
110

PATINTERP2; USE ROOTW, TAYLORWFUN USE PLOTRECT
SINC INTERPOLATION OF TAYLOR ONE-PARAMETER LINE SOURCE PATTERN
WITH EXPANDED SAMPLING, ALFA >= 1

J. WILLIS, P-753, JULY 1983

DIMENSION A(100) ,E(600)

REAL LWV

COMMON PI,SLR

PI=3,1415926536

PR=180/PI1

WRITE (12,900)

FORMAT (1X,"PROGRAM PATINTERP2; SINC INTERPOLATION OF PATTERN",/)
ACCEPT "L/WV,SLR.NPTS,ALFA ®,LWV,SLRD,NP,ALFA
IF (LWV.EQ.0.) GO TO 990

IF (SLRD.LT.13.26144) STOP "SLR TOO SMALL"
WRITE (12,920) LWV,NP,ALFA

FPORMAT (1X,"L/wWv=",F8.2," N POINTS=",14," ALFA=",F6.2,/)
USE WEGSTEIN ROOTER TO CALC B VALUE
SLR=10.** (,05*SLRD)

BS=,4603+.0479* (SLRD-13.26)

IF (IFL.EQ.0) GO TO 105

TYPE "ERROR FLAG ", IFL

TYPE BS,FO0," B=",B

WRITE (12,925) SLRD,B

FORMAT (1X,"SLR=",FS5.2," DB, B=",F9.6,/)
NMAX IS MAXIMUM INDEX IN SUMMATION
NMAX=2*INT(.5*% (2*ALFA*LWV+1))~1

NSAMP IS NUMBER OF SAMPLES EACH SIDE
NSAMP=NMAX+1

TYPE "NMAX=",NMAX," NSAMPLES=", NSAMP
CALC PATTERN POINTS

B2=B*B

E0O=SINH(PI*B) /(PI1*B)

IF (B.LT..001) EO=1

TYPE "E NORM=",E0

DO 110 I=1,NSAMP

A3=,5*I/ALFA

A32=A3*A3

IP (A32.GE.B2) GO TO 115

ARG=PI*SQRT (B2~A32)

IF (ARG.LT..00001) GO TO 116

A (1) =SINH(ARG) /ARG

GO TO 110

ARG=PI*SQRT(A32-B2)

IF (ARG.LT..001) GO TO 118
A(I)=SIN(ARG) /ARG

GO TO 110

A(l)=1

GO TO 110

A(I)=]1

CONTINUE

A0=]

TYPE "A(I)=", (A(L),L=1,NSAMP)

CALC PATTERN AT NP ANGLES




125
126

127
130

120

135
140

950
910
980

990
995

DO 120 I=1,NP
TH=90.*(2*I-NP~-1.)/(NP-1.)
THR=TH/PR

U=LWV*SIN(THR)

SUM=0

DO 130 J=1.NSAMP

Al=PI* (2*U*ALFA-J)

IF (ABS(Al).LT..001) GO TO 125
SNC1=SIN(Al) /Al

GO TO 126

SNC1=1

A2=PI* (2*U*ALFA+J)

IF (ABS(A2).LT..001) GO TO 127
SNC2=SIN(A2) /A2

GO TO 130

SNC2=1
SUM=SUM+A (J) * (SNC1+SNC2)
SNC=SIN(2*PI*U*ALFA)/ (2*PI*U*ALFA)
IF (ABS(U).LT..001) SNC=1
SUM=SUM/EO0+AD0*SNC
SUMDB=20*ALOG10 (ABS(SUM) +1.E~-6)
TYPE U,SUMDB

E(1)=SUMDB

SCALE PATTERN TO ZERO DB
EN=E (1)

DO 135 I=2,NP

IF (E(I).GT.EN) EN=E(I)

DO 140 I=1,NP

E(I)=E(I)-EN

WRITE PLOT FILE

OPEN 1."PLOTFILE",ERR=980
WRITE (1,950) (E(L),L=1,NP)
CLOSE 1

FORMAT (E12.6)

WRITE (12,910)

FORMAT (1X,/./.,/)

GO TO 100

STOP "FILE OPEN ERROR"
WRITE (12,995)

FORMAT (1X,"<FF>")

END




ROMBTEST; USE ROMBER,TAYBCALC,ROOTW, TAYWFUN,BESI, ROMBTSTFCT
COMPARE ROMBERG, 32 POINT GAUSS, AND ARRAY CALC 1
USE CLOSED FORM PATTERN AS REFERENCE |
USE TAYLOR ONE-PARAMETER DISRIBUTION [
LARGE U RANGE GIVES TIME AND ACCURACY CHECK
SEE ALSO GAUSSTEST AND ARRAYTEST
PREPARED BY R. C. HANSEN, OCT. 1983
’ DIMENSION E(1001),ITIME(3)
COMMON /TAY/ PI,SLR
COMMON /R/ PB,PU
PI=3.1415926536
100 ACCEPT "SLR,M,UMAX,NPOINTS ®, SLRD,M,UMAX, NPT
CALL TAYB(SLRD,B)
PB=PI*B
EO0=SINH(PB)/PB
IF (PB.LT..001) EO=1
CALL TIME(ITIME,IER)
TYPE (ITIME(L),L=1,3)
DO 120 I=1,NPT
PU=PI*(I-~1)*UMAX/ (NPT-1.) 1
CALL ROMBER(0.,l.,M,F) i
E(I)=20*ALOG10(ABS(F)/E0+1E-6) '
120 TYPE 1, E(I)
CALL TIME(ITIME,IER)
TYPE (ITIME(L),L=1,3)
s C SCALE BY LARGEST VALUE ;
EN=E(1) ;
DO 130 I=2,NPT ;
. 130 IF(E(I).GT.EN)EN=E(I)
. DO 140 I=1,NPT
140 E(I1)=E(I)-EN
OPEN 1, "PLOTFILE", ERR=980
WRITE (1,950) (E(L),L=1l,NPT)

eXeNeXsXeX2Xe!

R el

CLOSE 1 ;
950 FORMAT (E12.6) '
GO TO 100 |
980 STOP “FILE OPEN ERROR"
END I
f
i
{
3
f,
C ROMBTSTFCT; USE FOR ROMBTEST !

FUNCTION FCT(X)

COMMON /R/ PB,PU

CALL BESI (PB*SQRT(1-X*X),0,BI,IF)
. PCT=BI*COS (PU*X)

RETURN

]
. |




